3.179 \(\int \frac{\tan ^2(c+d x)}{\sqrt{a+a \sec (c+d x)}} \, dx\)

Optimal. Leaf size=63 \[ \frac{2 \tan (c+d x)}{d \sqrt{a \sec (c+d x)+a}}-\frac{2 \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{\sqrt{a} d} \]

[Out]

(-2*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(Sqrt[a]*d) + (2*Tan[c + d*x])/(d*Sqrt[a + a*Sec[
c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.0626098, antiderivative size = 63, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.13, Rules used = {3887, 321, 203} \[ \frac{2 \tan (c+d x)}{d \sqrt{a \sec (c+d x)+a}}-\frac{2 \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{\sqrt{a} d} \]

Antiderivative was successfully verified.

[In]

Int[Tan[c + d*x]^2/Sqrt[a + a*Sec[c + d*x]],x]

[Out]

(-2*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(Sqrt[a]*d) + (2*Tan[c + d*x])/(d*Sqrt[a + a*Sec[
c + d*x]])

Rule 3887

Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_.), x_Symbol] :> Dist[(-2*a^(m/2 +
 n + 1/2))/d, Subst[Int[(x^m*(2 + a*x^2)^(m/2 + n - 1/2))/(1 + a*x^2), x], x, Cot[c + d*x]/Sqrt[a + b*Csc[c +
d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m/2] && IntegerQ[n - 1/2]

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\tan ^2(c+d x)}{\sqrt{a+a \sec (c+d x)}} \, dx &=-\frac{(2 a) \operatorname{Subst}\left (\int \frac{x^2}{1+a x^2} \, dx,x,-\frac{\tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{d}\\ &=\frac{2 \tan (c+d x)}{d \sqrt{a+a \sec (c+d x)}}+\frac{2 \operatorname{Subst}\left (\int \frac{1}{1+a x^2} \, dx,x,-\frac{\tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{d}\\ &=-\frac{2 \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{\sqrt{a} d}+\frac{2 \tan (c+d x)}{d \sqrt{a+a \sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.717519, size = 119, normalized size = 1.89 \[ \frac{16 \cos ^6\left (\frac{1}{2} (c+d x)\right ) \sec ^4(c+d x) \left (\frac{1}{\sec (c+d x)+1}\right )^{5/2} \left (\sin (c+d x) \sqrt{\cos (c+d x)} \sqrt{\frac{1}{\cos (c+d x)+1}}-\cos (c+d x) \sin ^{-1}\left (\frac{\tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{\frac{1}{\cos (c+d x)+1}}}\right )\right )}{d \sqrt{a (\sec (c+d x)+1)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Tan[c + d*x]^2/Sqrt[a + a*Sec[c + d*x]],x]

[Out]

(16*Cos[(c + d*x)/2]^6*Sec[c + d*x]^4*((1 + Sec[c + d*x])^(-1))^(5/2)*(-(ArcSin[Tan[(c + d*x)/2]/Sqrt[(1 + Cos
[c + d*x])^(-1)]]*Cos[c + d*x]) + Sqrt[Cos[c + d*x]]*Sqrt[(1 + Cos[c + d*x])^(-1)]*Sin[c + d*x]))/(d*Sqrt[a*(1
 + Sec[c + d*x])])

________________________________________________________________________________________

Maple [B]  time = 0.162, size = 116, normalized size = 1.8 \begin{align*}{\frac{1}{ad\sin \left ( dx+c \right ) }\sqrt{{\frac{a \left ( \cos \left ( dx+c \right ) +1 \right ) }{\cos \left ( dx+c \right ) }}} \left ( \sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\sqrt{2}{\it Artanh} \left ({\frac{\sqrt{2}\sin \left ( dx+c \right ) }{2\,\cos \left ( dx+c \right ) }\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}} \right ) \sin \left ( dx+c \right ) -2\,\cos \left ( dx+c \right ) +2 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)^2/(a+a*sec(d*x+c))^(1/2),x)

[Out]

1/d/a*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)*((-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*2^(1/2)*arctanh(1/2*2^(1/2)*(-
2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c))*sin(d*x+c)-2*cos(d*x+c)+2)/sin(d*x+c)

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^2/(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [A]  time = 1.67118, size = 620, normalized size = 9.84 \begin{align*} \left [-\frac{\sqrt{-a}{\left (\cos \left (d x + c\right ) + 1\right )} \log \left (\frac{2 \, a \cos \left (d x + c\right )^{2} - 2 \, \sqrt{-a} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) - 2 \, \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{a d \cos \left (d x + c\right ) + a d}, \frac{2 \,{\left (\sqrt{a}{\left (\cos \left (d x + c\right ) + 1\right )} \arctan \left (\frac{\sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt{a} \sin \left (d x + c\right )}\right ) + \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )\right )}}{a d \cos \left (d x + c\right ) + a d}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^2/(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[-(sqrt(-a)*(cos(d*x + c) + 1)*log((2*a*cos(d*x + c)^2 - 2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*co
s(d*x + c)*sin(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)) - 2*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*
sin(d*x + c))/(a*d*cos(d*x + c) + a*d), 2*(sqrt(a)*(cos(d*x + c) + 1)*arctan(sqrt((a*cos(d*x + c) + a)/cos(d*x
 + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) + sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(a*d*cos(d
*x + c) + a*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tan ^{2}{\left (c + d x \right )}}{\sqrt{a \left (\sec{\left (c + d x \right )} + 1\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)**2/(a+a*sec(d*x+c))**(1/2),x)

[Out]

Integral(tan(c + d*x)**2/sqrt(a*(sec(c + d*x) + 1)), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: NotImplementedError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^2/(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError